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Recent research in neuroeconomics has demonstrated that the 

reinforcement learning model of reward learning captures the 

patterns of both behavioral performance and neural responses 

during a range of economic decision-making tasks. However, this 

powerful theoretical model has its limits. Trial-and-error is only one 

of the means by which individuals can learn the value associated 
with different decision options. Humans have also developed 
efficient, symbolic means of communication for learning without 

the necessity for committing multiple errors across trials. In the 

present study, we observed that instructed knowledge of cue 

reward probabilities improves behavioral performance and dimin 

ishes reinforcement learning-related blood-oxygen level-dependent 
(BOLD) responses to feedback in the nucleus accumbens, ventrome 

dial prefrontal cortex, and hippocampal complex. The decrease in 

BOLD responses in these brain regions to reward-feedback signals 
was functionally correlated with activation of the dorsolateral pre 
frontal cortex (DLPFC). These results suggest that when learning 
action values, participants use the DLPFC to dynamically adjust 
outcome responses in valuation regions depending on the useful 
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Feedback session Instructed session 

Fig. 1. Experimental design. In feedback session, the number 5 and a spe 
cific visual cue were displayed on the screen. In the instructed session, ad 
ditional probability information was displayed on top of the visual cue. 

likelihood estimation. Different prominent RL models were fit 
ted to the participants' behavioral data to determine the optimal 

model. We considered popular models: a RL model with a single 
learning rate for both positive and negative prediction errors 

(PEs) (8+ and 5_), and a RL model with different learning rates 
for both positive and negative PEs (6+ and 6_). In the instructed 
session, we also included a RL model that assigns a "confirma 

tion bias" to outcomes that match the instructions (27, 28) (SI 
Appendix, Tables SI and S2). In the feedback session, a simple 
RL model with a single learning rate (a) for both positive and 
negative PEs (8+ and 8_) tended to fit participants' behavior 
better. However, a Q-learning model with two different learning 
rates (oc+ and oc_) for positive and negative PEs (8+ and 8_) best 

explained participants' behavior in the instructed session 

(implementation of model fitting is detailed in SI Appendix). The 
McFadden's pseudo R-square was 0.50 for the feedback session 

and 0.61 for the instructed session (SI Appendix, Table SI). A 

single learning rate of 0.24 was estimated for the feedback ses 
sion; however, the learning rates associated with positive PE (oe+) 
was 0.05 and was 0 with negative PE (ct_) in the instructed ses 
sion (SI Appendix, Tables SI and S2). The significant difference 
of learning rates indicates that the PEs were not as efficiently 
incorporated to the updating of action value in the instructed 
session, especially when the outcome was worse than partic 

ipants' expectation. These results suggest that participants' 
actions were simply governed by the a priori action value 

instructed by experimenter, as indicated by the initial Q value 
associated with different stimuli (a. 

= 
0) (SIAppendix, Table S2). 

Functional MRI Results. RL model predicts BOLD signals in the feedback 

session. Our behavioral results suggest that a RL model captures 

participants' performance in the feedback session, but does not 
adequately describe learning in the instructed session. To explore 
if a similar pattern was reflected in the patterns of BOLD 
responses, we constructed a general linear model (GLM) with 
the PE regressors generated from the best fitting Q-learning 
models for both sessions (SI Appendix, Tables SI and S2) and in 
vestigated the neural correlates of PE in the feedback session and 
the instructed session (Fig. 3A). Ventral striatum BOLD response 

was significantly correlated with PE signals in the feedback session 
[P < 0.05, corrected, peak Montreal Neurological Institute (MNI 
coordinate) (-27 3 0), z 

= 
3.59] (Fig. 3A and SI Appendix, Table 

S2). There was no such correlation observed in the instructed 
session, even under a more relaxed threshold (P < 0.01, un 

corrected). A direct comparison between the BOLD responses 
that correlated with PEs in the feedback and instructed sessions 
further confirmed the differential involvement of striatum in 
encoding PEs in both sessions (SIAppendix, Fig. SI). Because PE 
and monetary outcome often tend to correlate with each other, 
PE regression analyses were performed by including the mone 
tary outcome regressor in the GLM for both sessions to separate 
PE-related BOLD responses from the outcome-related ones. 

As a learning signal, PE has its unique activity pattern. At the 
beginning of the learning phase, PE signals tend to respond to 
the onset of the outcome delivery, but as learning progresses PE 
signal shifts toward the onset of the cue/decision accompanied by 
a diminished response to the actual outcome. To further test that 

BOLD response in the striatum indeed encodes PEs in the 
feedback session, we conducted an independent two-way 
ANOVA to identify brain regions whose activities were modu 
lated by the interaction between the session (instructed vs. 

feedback) and learning phase (early vs. late learning). We hy 
pothesized that if a RL mechanism was engaged differentially 
between the instructed and the feedback session, we should 
observe an interaction between the session and learning phase 
factors in a two-way ANOVA. Indeed, this analysis yielded 
similar brain regions as the PE regression analysis [P < 0.05, 
small volume corrected for 343 surrounding voxels, peak MNI 
coordinate (-15 -6 0), Fh304 

= 15.55, z = 3.72] (Fig. 3B). A 
further region of interest (ROI) time-series analysis in the 
overlapping region of activation in the ventral striatum (Fig. 3C) 
revealed a pattern of BOLD response consistent with a PE 
learning signal in the feedback session. In early trials, striatum 
activation peaked at the onset of outcome. As learning pro 

gressed, this peak activation shifted toward the decision onset 
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Fig. 2. Behavioral results for both sessions. (A) Percentage of win trials (?SEM) for the different visual cue probabilities for both sessions. (B) The probability 
of 
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Fig. 3. BOLD responses for prediction errors in both sessions. (A) Activity of the striatum showed significant correlation to the PE signal in the feedback 
session (P < 0.05, corrected). Such correlations were not observed in the above structures in the instructed session (P < 0.01, uncorrected). (B) A two-way 
ANOVA showed an interaction between session (feedback and instructed) and learning phase (early and late) in the left striatum. (C) Striatal activation 
identified in the PE (A, yellow) and session x learning phase interaction (B, green) analyses, and the overlapping region (red). (D) BOLD response patterns in 
the overlapping region for the early and late phases of learning in the feedback and instructed sessions (*, time points with significantly different BOLD 

responses between early and late learning phases, P < 0.05; ? SEM). 

u 
o 

Q > 

(Fig. 3D, Left). However, this characteristic PE response pattern 
was absent in the instructed session (Fig. 3D, Right). 
Reduced BOLD responses to outcomes in the instructed session. In 

spired by the results that participants' choices are differentially 
influenced by previous trial 
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Fig. 4. BOLD responses discriminating win and loss for both sessions. (A) A whole-brain analysis revealed greater activation in the NAc, vmPFC, and bilateral 

hippocampal complex for win than loss trials across both sessions (P < 0.05, corrected). (B) BOLD time course of activation in the NAc, vmPFC, and bilateral 

hippocampal complex for win and loss trials in the feedback and instructed sessions (*, significant difference of time points near activation peaks, P< 0.05; ? SEM). 

showed a greater BOLD response to win outcomes during the 
instructed session (Fig. 5A and SI Appendix, Table S5). 
Functional connectivity between DLPFC and reward-related brain 

structures. The DLPFC has previously been implicated in decision 
making and emotion regulation tasks that require the top-down 
modulation of valuation regions (25, 26, 34). To determine if the 
left DLPFC acted as a cognitive modulator of reward learning 
regions in the presence of instructed knowledge, we conducted 
a psychophysiological interaction (PPI) analysis using the peak 
voxels in the left DLPFC (Fig. 5A) as the seed region, and tested 
which brain areas showed 
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y = 45 

Fig. 5. Left DLPFC activity showed negative functional connectivity to brain 
structures related to reward valuation. (A) Left DLPFC showed relatively greater 
activation to monetary gains in the instructed than the feedback session (P < 

0.05, corrected). (B) PPI analysis showing regions negatively correlated with the 
left DLPFC on win trials in the instructed session (P < 0.05, corrected) but not in 

the feedback session (P < 0.01, uncorrected) (5/ Appendix, Fig. S2). 

ticipants' behavior best in the instructed session (see SI Appendix 
for technical details). Using the PEs generated from the above 
best-fitting RL model, our fMRI analysis did not reveal a corre 

lation between PE signal and striatal BOLD responses (P < 0.01, 
uncorrected) in the instructed session. Taken together, these 

results suggest that participants might rely less on PE signals for 
action-value updating when symbolic, instructed knowledge of the 

reward probabilities is available. Consistent with this hypothesis, 
both behavior (Fig. IB) and BOLD responses were less influenced 
by outcomes in the instructed session. Indeed, we observed rela 

tively smaller activations in brain areas (NAc, vmPFC, and hip 

pocampal complex) typically associated with reward learning and 
valuation (11,25,30,31,33,35-37,44-50) when participants were 

rewarded for their choices in the instructed session (Fig. 4B and SI 
Appendix, Table S4). These findings suggest that the brain assigns 

less weight to actual outcomes when other sources of reliable 

information (instructed knowledge) about the cue-reward prob 

ability and optimal choice strategies are available. 
The mechanism by which participants dynamically adjust their 

reliance on outcome information when symbolic knowledge of the 
reward probabilities is available was revealed in an exploratory 

analysis that showed higher left DLPFC activity when participants 
experienced monetary wins in the instructed relative to the feed 

back session (Fig. 5A). Importantly, PPI analysis using this DLPFC 
area as a seed region revealed negative functional connectivity 
between BOLD activities in the left DLPFC, and those in brain 
regions related to reward learning and valuation (NAc, vmPFC, 
and the hippocampal complex) among other brain areas (Fig. 5B 
and SI Appendix, Fig. S2 and Table S6). Interestingly, these regions 
overlapped remarkably well with those identified previously 
through the win-loss contrast (Figs. 4A and 5B). Thus, we propose 
a functional link between the DLPFC and an outcome-valuation 

learning system. This latter system is pivotal in providing correct 
value or "utility" information to facilitate learning based on mon 

etary feedback, but appears to be less important when preexisting, 

symbolic knowledge to guide choices is available. 
Taken together, these results suggest that when learning action 

values, the DLPFC tends to dynamically adjust outcome responses 
in reward-related brain regions depending on the usefulness of ac 

tion-outcome information compared with explicit knowledge par 

ticipants directly obtained from social communication. Although 
the current study demonstrates the importance of this DLPFC, re 

ward-related structure circuitry for learning and reward processing, 

previous neuroeconomic research has outlined a similar circuitry 
across a range of decision-making tasks in which preexisting reward 

values that are represented in valuation regions can be modulated 

based on social processes (51, 52), goals (34), or other cognitive 
factors (52, 53). Although there have been suggestions that the 
DLPFC and reward-related regions represent independent systems 
in the brain competing with each other for the dominance of action 
selection (27, 28, 53, 54), our results are more consistent with a 

general role for the DLPFC in modulating the engagement of re 
ward-related regions depending on the relative importance of the 
information during a learning paradigm. 
Our findings also lend neurological evidence to support recent 

computational approaches to reconcile a broad range of literatures 

suggesting multiple representation systems in the brain for behav 
ioral control. One such system deploys a model-free method and 

"learns putatively simpler quantities," such as policies that are suf 

ficient to permit optimal performance through processing action 
outcomes. It is suggested this computation is carried out in the 
dorsolateral striatum. The other system, which employs the pre 
frontal cortex, adopts a model-based method to make use of avail 

able or learned rules and derives optimal choice through dynamic 
programming. The brain arbitrates between different representation 
systems according to the uncertainty estimated from each system (38, 
39, 55). In our task, the state transition probabilities (reward prob 
abilities) were more accurate in the instructed session (provided by 
the experimenter), thus the model-based approach would dominate 
participants' choice by recruiting the DLPFC to bias responses in the 
reward-valuation systems. 

The brain's reward-learning circuitry as instantiated in the RL 

model is a phylogenetically old system for learning based on trial 
and-error. When social structures and means of communication are 

more complex, these basic reward-learning processes may not be 

optimal to promote the best decision. Errors are costly and un 

necessary when additional, symbolic information about the best 
decision is available. The current study demonstrates how the 

DLPFC interacts with the reward-learning circuitry to diminish the 
impact of actual trial-outcome information, presumably enabling 

symbolic knowledge of reward probability to guide choices. Our 
data add to the growing literature of interactions of different types of 
information to achieve optimal behavior in decision making and 
provide direct support to the computational theory that arbitrates 
between different representation systems by assigning control to the 
one that has less uncertainty of the correct action values. 

Methods 
Participants. Twenty participants were recruited and tested in compliance with 
the university committee on activities involving human subjects [University 
Committee on Activities Involving Human Subjects (UCAIHS)]. The experiment 
was approved by the UCAIHS at New York University and all subjects provided 
informed consent before the experiment. Of the 20 participants, 7 were male, 
9 were non-Caucasian, and the group had an average age of 21.6 y (SD = 3.72). 

Experimental Procedures. Each participant played two sessions of the task. One 
session was named the "feedback" session and the other session was titled the 
"instructed" session (Fig. 1). For both sessions, participants were told that they 

would see different visual cues which represent how likely the number un 

derneath the cue would be greater or less than 5 (value of underlying number e 

{1, 2, 3, 4, 6, 7, 8, 9}). The sequence of the two sessions was randomized across 

participants, so that 10 out of 20 participants experienced the feedback session 
first. In both sessions, four different visual cues representing different proba 
bilities (P g {25, 50,75,100%}) of the number underneath the cue being greater 
than 5 were presented to participants. For both sessions, participants saw a cue 
next to the number 5 on each trial. Each cue was randomly presented 20 times 
for a total of 80 trials per session (see SI Appendix for details). 

Functional MRI Image Acquisition. Scanning was performed on all 20 participants 
with a 3-T Siemens Allegra head-only scanner and a Siemens standard head coil at 
New York University's Center for Brain Imaging (see SI Appendix for details). 

Behavioral Analysis. Participants' choice behaviors in both sessions were 

modeled by a simple RL algorithm (See SI Appendix for details). We tested 
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our model against others suggested in the literature based on behavioral 

data with similar tasks (27, 28) using the Bayesian information criterion as 
a criterion for model selection. For the feedback session, the simple RL with 
one learning rate (a) for both positive and negative prediction errors fits 

participants' behavior better. However, RL with different learning rates 

(oc+ and <x_) for positive and negative (8+ and 8_) PEs fits participants' choices 

the best in the instructed session (see SI Appendix for details). 

Imaging Analysis. We first regressed PEs that were generated for both the 

feedback and instructed sessions using the best-fitting parameters to the 

whole-brain BOLD signals at the revelation of monetary outcome to identify 
the brain areas whose activities were correlated with the calculation of PE. 

Monetary outcomes were also included as dummy regressors to account for 
the effect of the magnitude of the reward value. 

Repeated-measures two-way ANOVA was performed on the functional im 

aging data with two factors (session and learning phase) at the onset of feedback. 

The finite impulse response from time 0 to ~12 s (TRO to ~TR6) was generated by 

resampling the BOLD time series of each voxel in the brain and averaging across 40 

trials each for the early and late learning phases in both sessions. Because ca 

nonical hemodynamic response function typically peaks at 6 to ~8 s after the 

stimulus onset, the two-way ANOVA was performed on both TR3 (6 s) and TR4 

(8 s). These whole-brain analyses were performed on each voxel to identify brain 

regions that showed a significant interaction effect with time (i.e., early vs. late 

learning) and session (i.e., feedback vs. instructed session). 

Finally, we conducted a PPI analysis to investigate the connectivity be 

tween brain regions that may modulate the impact of instructed knowledge 
on RL learning signals (see SI Appendix for technical details). 
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